Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 495  Home  EMail this page Print this page Decrease font size Default font size Increase font size 

    Article Cited by others


Automated medical image segmentation techniques

Sharma Neeraj, Aggarwal Lalit M

Year : 2010| Volume: 35| Issue : 1 | Page no: 3-14

   This article has been cited by
1 Automatic cell counting for phase-contrast microscopic images based on a combination of Otsu and watershed segmentation method
Yuefei Lin, Yong Diao, Yongzhao Du, Jianguang Zhang, Ling Li, Peizhong Liu
Microscopy Research and Technique. 2021;
[Pubmed]  [Google Scholar] [DOI]
2 Unveiling buried aeolian landscapes: reconstructing a late Holocene dune environment using 3D ground-penetrating radar
Luis Rees-Hughes, Natasha L. M. Barlow, Adam D. Booth, Landis J. West, George Tuckwell, Tim Grossey
Journal of Quaternary Science. 2021; 36(3): 377
[Pubmed]  [Google Scholar] [DOI]
3 Catheter position prediction using deep-learning-based multi-atlas registration for high-dose rate prostate brachytherapy
Yang Lei, Tonghe Wang, Yabo Fu, Justin Roper, Ashesh B. Jani, Tian Liu, Pretesh Patel, Xiaofeng Yang
Medical Physics. 2021; 48(11): 7261
[Pubmed]  [Google Scholar] [DOI]
4 Deep learning methods for automatic segmentation of lower leg muscles and bones from MRI scans of children with and without cerebral palsy
Jiayi Zhu, Bart Bolsterlee, Brian V. Y. Chow, Chengxue Cai, Robert D. Herbert, Yang Song, Erik Meijering
NMR in Biomedicine. 2021; 34(12)
[Pubmed]  [Google Scholar] [DOI]
5 CT-based radiomics for differentiating renal tumours: a systematic review
Abhishta Bhandari, Muhammad Ibrahim, Chinmay Sharma, Rebecca Liong, Sonja Gustafson, Marita Prior
Abdominal Radiology. 2021; 46(5): 2052
[Pubmed]  [Google Scholar] [DOI]
6 Gastrointestinal duplication cysts: what a radiologist needs to know
Darshan Gandhi, Tushar Garg, Jignesh Shah, Harpreet Sawhney, Benjamin James Crowder, Arpit Nagar
Abdominal Radiology. 2021;
[Pubmed]  [Google Scholar] [DOI]
7 Outlier removal in biomaterial image segmentations using a non-stationary Bayesian learning
Wahyudin P. Syam, Panorios Benardos, Emily Britchford, Andrew Hopkinson, David T. Branson
Pattern Analysis and Applications. 2021; 24(4): 1805
[Pubmed]  [Google Scholar] [DOI]
8 Mechanics informed fluoroscopy of esophageal transport
Sourav Halder, Shashank Acharya, Wenjun Kou, Peter J. Kahrilas, John E. Pandolfino, Neelesh A. Patankar
Biomechanics and Modeling in Mechanobiology. 2021; 20(3): 925
[Pubmed]  [Google Scholar] [DOI]
9 The role of AI technology in prediction, diagnosis and treatment of colorectal cancer
Chaoran Yu, Ernest Johann Helwig
Artificial Intelligence Review. 2021;
[Pubmed]  [Google Scholar] [DOI]
10 A Systematic Review of the Techniques for the Automatic Segmentation of Organs-at-Risk in Thoracic Computed Tomography Images
Malvika Ashok, Abhishek Gupta
Archives of Computational Methods in Engineering. 2021; 28(4): 3245
[Pubmed]  [Google Scholar] [DOI]
11 Multiparametric prostate MRI and structured reporting: benefits and challenges in the PI-RADS era
Sanas Mir-Bashiri, Kaneschka Yaqubi, Piotr Woznicki, Niklas Westhoff, Jost von Hardenberg, Thomas Huber, Matthias F. Froelich, Wieland H. Sommer, Maximilian F. Reiser, Stefan O. Schoenberg, Dominik Nörenberg
Chinese Journal of Academic Radiology. 2021; 4(1): 21
[Pubmed]  [Google Scholar] [DOI]
12 Spinal Cord MRI Segmentation Techniques and Algorithms: A Survey
Sheetal Garg, S. R. Bhagyashree
SN Computer Science. 2021; 2(3)
[Pubmed]  [Google Scholar] [DOI]
13 Level set approach based on Parzen Window and floor of log for edge computing object segmentation in digital images
Elizângela de Souza Rebouças, Fátima Nelsizeuma Sombra de Medeiros, Regis Cristiano P. Marques, João Victor S. Chagas, Matheus T. Guimarães, Lucas O. Santos, Aldisio G. Medeiros, Solon A. Peixoto
Applied Soft Computing. 2021; 105: 107273
[Pubmed]  [Google Scholar] [DOI]
14 Adaptive thresholding technique based classification of red blood cell and sickle cell using Naïve Bayes Classifier and K-nearest neighbor classifier
Chayashree Patgiri, Amrita Ganguly
Biomedical Signal Processing and Control. 2021; 68: 102745
[Pubmed]  [Google Scholar] [DOI]
15 Binary segmentation of medical images using implicit spline representations and deep learning
Oliver J.D. Barrowclough, Georg Muntingh, Varatharajan Nainamalai, Ivar Stangeby
Computer Aided Geometric Design. 2021; 85: 101972
[Pubmed]  [Google Scholar] [DOI]
16 Dynamics of hydrogen loss and structural changes in pyrolyzing biomass utilizing neutron imaging
Frederik Ossler, Charles E.A. Finney, Jeffrey M. Warren, Jean-Christophe Bilheux, Yuxuan Zhang, Rebecca A. Mills, Louis J. Santodonato, Hassina Z. Bilheux
Carbon. 2021; 176: 511
[Pubmed]  [Google Scholar] [DOI]
17 Object-oriented classification approach for bone metastasis mapping from whole-body bone scintigraphy
Mihaela Antonina Calin, Florina-Gianina Elfarra, Sorin Viorel Parasca
Physica Medica. 2021; 84: 141
[Pubmed]  [Google Scholar] [DOI]
18 Subject-specific rib finite element models with material data derived from coupon tests under bending loading
Keegan M. Yates, Amanda M. Agnew, Devon L. Albert, Andrew R. Kemper, Costin D. Untaroiu
Journal of the Mechanical Behavior of Biomedical Materials. 2021; 116: 104358
[Pubmed]  [Google Scholar] [DOI]
19 Auto-delineation framework for the focal liver reaction observed in post Stereotactic Body Radiation Therapy (SBRT) Primovist MRI scans
Svetlana Kuznetsova, Petra Grendarova, Rishi Sinha, Nicolas Ploquin, Kundan Thind
Medical Dosimetry. 2021;
[Pubmed]  [Google Scholar] [DOI]
20 Semi-automatic sigmoid colon segmentation in CT for radiation therapy treatment planning via an iterative 2.5-D deep learning approach
Yesenia Gonzalez, Chenyang Shen, Hyunuk Jung, Dan Nguyen, Steve B. Jiang, Kevin Albuquerque, Xun Jia
Medical Image Analysis. 2021; 68: 101896
[Pubmed]  [Google Scholar] [DOI]
21 Deep learning for the fully automated segmentation of the inner ear on MRI
Akshayaa Vaidyanathan, Marly F. J. A. van der Lubbe, Ralph T. H. Leijenaar, Marc van Hoof, Fadila Zerka, Benjamin Miraglio, Sergey Primakov, Alida A. Postma, Tjasse D. Bruintjes, Monique A. L. Bilderbeek, Hammer Sebastiaan, Patrick F. M. Dammeijer, Vincent van Rompaey, Henry C. Woodruff, Wim Vos, Seán Walsh, Raymond van de Berg, Philippe Lambin
Scientific Reports. 2021; 11(1)
[Pubmed]  [Google Scholar] [DOI]
22 Image decomposition-based sparse extreme pixel-level feature detection model with application to medical images
Geet Lahoti, Jialei Chen, Xiaowei Yue, Hao Yan, Chitta Ranjan, Zhen Qian, Chuck Zhang, Ben Wang
IISE Transactions on Healthcare Systems Engineering. 2021; : 1
[Pubmed]  [Google Scholar] [DOI]
23 Phase-aberration compensation via deep learning in digital holographic microscopy
Shujun Ma, Rui Fang, Yu Luo, Qi Liu, Shiliang Wang, Xu Zhou
Measurement Science and Technology. 2021; 32(10): 105203
[Pubmed]  [Google Scholar] [DOI]
24 Head-and-neck organs-at-risk auto-delineation using dual pyramid networks for CBCT-guided adaptive radiotherapy
Xianjin Dai, Yang Lei, Tonghe Wang, Anees H Dhabaan, Mark McDonald, Jonathan J Beitler, Walter J Curran, Jun Zhou, Tian Liu, Xiaofeng Yang
Physics in Medicine & Biology. 2021; 66(4): 045021
[Pubmed]  [Google Scholar] [DOI]
25 Quantification of abdominal fat from computed tomography using deep learning and its association with electronic health records in an academic biobank
Matthew T MacLean, Qasim Jehangir, Marijana Vujkovic, Yi-An Ko, Harold Litt, Arijitt Borthakur, Hersh Sagreiya, Mark Rosen, David A Mankoff, Mitchell D Schnall, Haochang Shou, Julio Chirinos, Scott M Damrauer, Drew A Torigian, Rotonya Carr, Daniel J Rader, Walter R Witschey
Journal of the American Medical Informatics Association. 2021; 28(6): 1178
[Pubmed]  [Google Scholar] [DOI]
26 A Hybrid Compression Method for Medical Images Based on Region of Interest Using Artificial Neural Networks
Ali Ibrahim Khaleel, Nik Adilah Hanin Zahri, Muhammad Imran Ahmad, Paolo Castaldo
Journal of Engineering. 2021; 2021: 1
[Pubmed]  [Google Scholar] [DOI]
27 Development of an Endovascular Model of Pelvic Hemorrhage Using Volumetric Computed Tomography Validation
Hossam Abdou, Jonathan Du, Melike N. Harfouche, Neerav Patel, Joseph Edwards, Michael Richmond, Noha Elansary, Jonathan J. Morrison
Journal of Endovascular Therapy. 2021; 28(4): 614
[Pubmed]  [Google Scholar] [DOI]
28 A tool for precise calculation of organ doses in voxelised geometries using GAMOS/Geant4 with a graphical user interface
Pedro Arce Dubois, Nguyen Thi Phuong Thao, Nguyen Thien Trung, Juan Diego Azcona, Pedro-Borja Aguilar-Redondo
Polish Journal of Medical Physics and Engineering. 2021; 27(1): 31
[Pubmed]  [Google Scholar] [DOI]
29 Comparative assessment of the optical-electronic images segmentation quality by the ant colony optimization and the artificial bee colony
?.?. ?????, ?.?. ??????
??????? ??????? ??????????. 2021; (1(164)): 104
[Pubmed]  [Google Scholar] [DOI]
30 Automated tooth segmentation as an innovative tool to assess 3D-tooth movement and root resorption in rodents
Viktoria Trelenberg-Stoll, Dieter Drescher, Michael Wolf, Kathrin Becker
Head & Face Medicine. 2021; 17(1)
[Pubmed]  [Google Scholar] [DOI]
31 Accuracy of joint line restoration based on three-dimensional registration of the contralateral tibial tuberosity and the fibular tip
Sandro Hodel, Anna-Katharina Calek, Philipp Fürnstahl, Sandro F. Fucentese, Lazaros Vlachopoulos
Journal of Experimental Orthopaedics. 2021; 8(1)
[Pubmed]  [Google Scholar] [DOI]
32 Photonic approach for simultaneous measurement of microwave DFS and AOA
Jianing Zhao, Zhenzhou Tang, Shilong Pan
Applied Optics. 2021; 60(16): 4622
[Pubmed]  [Google Scholar] [DOI]
33 WDTISeg: One-Stage Interactive Segmentation for Breast Ultrasound Image Using Weighted Distance Transform and Shape-Aware Compound Loss
Xiaokang Li, Mengyun Qiao, Yi Guo, Jin Zhou, Shichong Zhou, Cai Chang, Yuanyuan Wang
Applied Sciences. 2021; 11(14): 6279
[Pubmed]  [Google Scholar] [DOI]
34 Interactive Machine Learning-Based Multi-Label Segmentation of Solid Tumors and Organs
Dimitrios Bounias, Ashish Singh, Spyridon Bakas, Sarthak Pati, Saima Rathore, Hamed Akbari, Michel Bilello, Benjamin A. Greenberger, Joseph Lombardo, Rhea D. Chitalia, Nariman Jahani, Aimilia Gastounioti, Michelle Hershman, Leonid Roshkovan, Sharyn I. Katz, Bardia Yousefi, Carolyn Lou, Amber L. Simpson, Richard K. G. Do, Russell T. Shinohara, Despina Kontos, Konstantina Nikita, Christos Davatzikos
Applied Sciences. 2021; 11(16): 7488
[Pubmed]  [Google Scholar] [DOI]
35 Radiogenomics in Colorectal Cancer
Bogdan Badic, Florent Tixier, Catherine Cheze Le Rest, Mathieu Hatt, Dimitris Visvikis
Cancers. 2021; 13(5): 973
[Pubmed]  [Google Scholar] [DOI]
36 Symmetric Reconstruction of Functional Liver Segments and Cross-Individual Correspondence of Hepatectomy
Doan Cong Le, Jirapa Chansangrat, Nattawut Keeratibharat, Paramate Horkaew
Diagnostics. 2021; 11(5): 852
[Pubmed]  [Google Scholar] [DOI]
37 A Novel Computational Model for Detecting the Severity of Inflammation in Confirmed COVID-19 Patients Using Chest X-ray Images
Mohammed S. Alqahtani, Mohamed Abbas, Ali Alqahtani, Mohammad Alshahrani, Abdulhadi Alkulib, Magbool Alelyani, Awad Almarhaby, Abdullah Alsabaani
Diagnostics. 2021; 11(5): 855
[Pubmed]  [Google Scholar] [DOI]
38 Adapting for the COVID-19 pandemic in Ecuador, a characterization of hospital strategies and patients
Daniel Garzon-Chavez, Daniel Romero-Alvarez, Marco Bonifaz, Juan Gaviria, Daniel Mero, Narcisa Gunsha, Asiris Perez, María Garcia, Hugo Espejo, Franklin Espinosa, Edison Ligña, Mauricio Espinel, Emmanuelle Quentin, Enrique Teran, Francisco Mora, Jorge Reyes, Adriana Calderaro
PLOS ONE. 2021; 16(5): e0251295
[Pubmed]  [Google Scholar] [DOI]
39 Watertight 2-manifold 3D bone surface model reconstruction from CT images based on visual hyper-spherical mapping
Tianran Yuan, Hongsheng Zhang, Hao Liu, Juan Du, Huiming Yu, Yimin Wang, Yabin Xu
Mathematical Biosciences and Engineering. 2021; 18(2): 1280
[Pubmed]  [Google Scholar] [DOI]
40 Kidney and Tumor Segmentation using U-Net Deep Learning Model
Rochan Sharma, Pallavi Halarnkar, Kiran Choudhari
SSRN Electronic Journal. 2020;
[Pubmed]  [Google Scholar] [DOI]
41 Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality
Santiago González Izard, Ramiro Sánchez Torres, Óscar Alonso Plaza, Juan Antonio Juanes Méndez, Francisco José García-Peñalvo
Sensors. 2020; 20(10): 2962
[Pubmed]  [Google Scholar] [DOI]
42 Software Filtering Applications for the Analysis of Dental Images
Antoanela Naaji, Marius-Constantin Popescu, Gabriel Calin Sarla
[Pubmed]  [Google Scholar] [DOI]
43 Reliability of 3D image analysis and influence of contrast medium administration on measurement of Hounsfield unit values of the proximal femur
Hye-Won Lee, Hong Il Ha, Sun-Young Park, Hyun Kyung Lim, Peter M.A. van Ooijen
PLOS ONE. 2020; 15(10): e0241012
[Pubmed]  [Google Scholar] [DOI]
44 Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning
L. Umapathy, B. Winegar, L. MacKinnon, M. Hill, M.I. Altbach, J.M. Miller, A. Bilgin
American Journal of Neuroradiology. 2020; 41(6): 1061
[Pubmed]  [Google Scholar] [DOI]
45 SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
Peng Zhao, Jindi Zhang, Weijia Fang, Shuiguang Deng
Frontiers in Bioengineering and Biotechnology. 2020; 8
[Pubmed]  [Google Scholar] [DOI]
46 Improving CT Image Tumor Segmentation Through Deep Supervision and Attentional Gates
Alžbeta Turecková, TomᚠTurecek, Zuzana Komínková Oplatková, Antonio Rodríguez-Sánchez
Frontiers in Robotics and AI. 2020; 7
[Pubmed]  [Google Scholar] [DOI]
47 Digital Endocasting in Comparative Canine Brain Morphology
Kálmán Czeibert, Andrea Sommese, Örs Petneházy, Tibor Csörgo, Eniko Kubinyi
Frontiers in Veterinary Science. 2020; 7
[Pubmed]  [Google Scholar] [DOI]
48 Identification of Breast Malignancy by Marker-Controlled Watershed Transformation and Hybrid Feature Set for Healthcare
Tariq Sadad, Ayyaz Hussain, Asim Munir, Muhammad Habib, Sajid Ali Khan, Shariq Hussain, Shunkun Yang, Mohammed Alawairdhi
Applied Sciences. 2020; 10(6): 1900
[Pubmed]  [Google Scholar] [DOI]
49 Automated Classification of Blood Loss from Transurethral Resection of the Prostate Surgery Videos Using Deep Learning Technique
Jian-Wen Chen, Wan-Ju Lin, Chun-Yuan Lin, Che-Lun Hung, Chen-Pang Hou, Ching-Che Cho, Hong-Tsu Young, Chuan-Yi Tang
Applied Sciences. 2020; 10(14): 4908
[Pubmed]  [Google Scholar] [DOI]
50 Effect of reconstruction parameters on cone beam CT trabecular bone microstructure quantification in sheep
Aso Muhammad Ali Muhammad, Norliza Ibrahim, Rohana Ahmad, Muhammad Khan Asif, Zamri Radzi, Zuraiza Mohamad Zaini, Hairil Rashmizal Abdul Razak
BMC Oral Health. 2020; 20(1)
[Pubmed]  [Google Scholar] [DOI]
51 Crowdsourcing human-based computation for medical image analysis: A systematic literature review
Nataša Petrovic, Gabriel Moyà-Alcover, Javier Varona, Antoni Jaume-i-Capó
Health Informatics Journal. 2020; 26(4): 2446
[Pubmed]  [Google Scholar] [DOI]
52 Magician’s Corner: 4. Image Segmentation with U-Net
Bradley J. Erickson, Jason Cai
Radiology: Artificial Intelligence. 2020; 2(1): e190161
[Pubmed]  [Google Scholar] [DOI]
53 Detection of Diabetic Macular Edema in Optical Coherence Tomography Image Using an Improved Level Set Algorithm
Zhenhua Wang, Wenping Zhang, Yanan Sun, Mudi Yao, Biao Yan
BioMed Research International. 2020; 2020: 1
[Pubmed]  [Google Scholar] [DOI]
54 Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images
Ying-Hwey Nai, Bernice W. Teo, Nadya L. Tan, Koby Yi Wei Chua, Chun Kit Wong, Sophie O’Doherty, Mary C. Stephenson, Josh Schaefferkoetter, Yee Liang Thian, Edmund Chiong, Anthonin Reilhac, Nadia A. Chuzhanova
Computational and Mathematical Methods in Medicine. 2020; 2020: 1
[Pubmed]  [Google Scholar] [DOI]
55 Integrating AI into radiology workflow: levels of research, production, and feedback maturity
Engin Dikici, Matthew Bigelow, Luciano M. Prevedello, Richard D. White, Barbaros S. Erdal
Journal of Medical Imaging. 2020; 7(01): 1
[Pubmed]  [Google Scholar] [DOI]
56 Hierarchy-NMS: Merging Candidate Bounding Boxes for Cerebrospinal Fluid Cell Image Segmentation
Xianwei Xu, Fangqi Li, Shilin Wang, Zhenhai Wang
Journal of Physics: Conference Series. 2020; 1693: 012140
[Pubmed]  [Google Scholar] [DOI]
57 Semi-automatic segmentation of whole-body images in longitudinal studies
Eloïse Grossiord, Laurent Risser, Salim Kanoun, Richard Aziza, Harold Chiron, Loïc Ysebaert, François Malgouyres, Soléakhéna Ken
Biomedical Physics & Engineering Express. 2020; 7(1): 015014
[Pubmed]  [Google Scholar] [DOI]
58 Volumetric interpolation of tomographic sequences for accurate 3D reconstruction of anatomical parts
Chiara Santarelli, Fabrizio Argenti, Francesca Uccheddu, Luciano Alparone, Monica Carfagni
Computer Methods and Programs in Biomedicine. 2020; 194: 105525
[Pubmed]  [Google Scholar] [DOI]
59 Developing a Point-of-Care Manufacturing Program for Craniomaxillofacial Surgery
Kevin Arce, Jonathan M. Morris, Amy E. Alexander, Kyle S. Ettinger
Atlas of the Oral and Maxillofacial Surgery Clinics. 2020; 28(2): 165
[Pubmed]  [Google Scholar] [DOI]
60 Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis
Aaron Carass, Snehashis Roy, Adrian Gherman, Jacob C. Reinhold, Andrew Jesson, Tal Arbel, Oskar Maier, Heinz Handels, Mohsen Ghafoorian, Bram Platel, Ariel Birenbaum, Hayit Greenspan, Dzung L. Pham, Ciprian M. Crainiceanu, Peter A. Calabresi, Jerry L. Prince, William R. Gray Roncal, Russell T. Shinohara, Ipek Oguz
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
61 Micro-CT scan with virtual dissection of left ventricle is a non-destructive, reproducible alternative to dissection and weighing for left ventricular size
Ata Doost, Alejandra Rangel, Quang Nguyen, Grant Morahan, Leonard Arnolda
Scientific Reports. 2020; 10(1)
[Pubmed]  [Google Scholar] [DOI]
62 Novel multi-linear quantitative brain volume formula for manual radiological evaluation of brain atrophy
R Sungura, E Mpolya, JM Spitsbergen, C Onyambu, E Sauli, J-M Vianney
European Journal of Radiology Open. 2020; 7: 100281
[Pubmed]  [Google Scholar] [DOI]
63 Skin lesion segmentation using fully convolutional networks: A comparative experimental study
Ruya Kaymak, Cagri Kaymak, Aysegul Ucar
Expert Systems with Applications. 2020; 161: 113742
[Pubmed]  [Google Scholar] [DOI]
64 A stochastic multi-agent approach for medical-image segmentation: Application to tumor segmentation in brain MR images
Mohamed T. Bennai, Zahia Guessoum, Smaine Mazouzi, Stéphane Cormier, Mohamed Mezghiche
Artificial Intelligence in Medicine. 2020; 110: 101980
[Pubmed]  [Google Scholar] [DOI]
65 R2D2: A scalable deep learning toolkit for medical imaging segmentation
Soulaimane Guedria, Noël De Palma, Félix Renard, Nicolas Vuillerme
Software: Practice and Experience. 2020; 50(10): 1966
[Pubmed]  [Google Scholar] [DOI]
66 Machine Learning-Enabled Smart Sensor Systems
Nam Ha, Kai Xu, Guanghui Ren, Arnan Mitchell, Jian Zhen Ou
Advanced Intelligent Systems. 2020; 2(9): 2000063
[Pubmed]  [Google Scholar] [DOI]
67 Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation
Bang Jun Guo, Xiuxiu He, Yang Lei, Joseph Harms, Tonghe Wang, Walter J. Curran, Tian Liu, Long Jiang Zhang, Xiaofeng Yang
Medical Physics. 2020; 47(4): 1775
[Pubmed]  [Google Scholar] [DOI]
68 Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy
Yabo Fu, Yang Lei, Tonghe Wang, Sibo Tian, Pretesh Patel, Ashesh B. Jani, Walter J. Curran, Tian Liu, Xiaofeng Yang
Medical Physics. 2020; 47(8): 3415
[Pubmed]  [Google Scholar] [DOI]
69 Recent computational methods for white blood cell nuclei segmentation: A comparative study
Alan R. Andrade, Luis H.S. Vogado, Rodrigo de M.S. Veras, Romuere R.V. Silva, Flávio H.D. Araujo, Fátima N.S. Medeiros
Computer Methods and Programs in Biomedicine. 2019; 173: 1
[Pubmed]  [Google Scholar] [DOI]
70 An Automated Segmentation and Counting of Ki67 Cells in Meningioma Using K-Means Clustering Technique
Fahmi Akmal Dzulkifli, Mohd Yusoff Mashor, Hasnan Jaafar
Journal of Physics: Conference Series. 2019; 1372(1): 012060
[Pubmed]  [Google Scholar] [DOI]
71 A Novel Algorithm for Segmentation of Parasites in Thin Blood Smears From Microscopy Using Type II Fuzzy Sets and Inverse Gaussian Gradient
Madhu Golla
International Journal of Computer Vision and Image Processing. 2019; 9(3): 1
[Pubmed]  [Google Scholar] [DOI]
72 3D printing: clinical applications in orthopaedics and traumatology
Ferdinando Auricchio, Stefania Marconi
EFORT Open Reviews. 2016; 1(5): 121
[Pubmed]  [Google Scholar] [DOI]
73 Dendritic tree extraction from noisy maximum intensity projection images in C. elegans
Ayala Greenblum, Raphael Sznitman, Pascal Fua, Paulo E Arratia, Meital Oren, Benjamin Podbilewicz, Josué Sznitman
BioMedical Engineering OnLine. 2014; 13(1)
[Pubmed]  [Google Scholar] [DOI]
74 Three-Dimensional Reconstruction Volume: A Novel Method for Volume Measurement in Kidney Cancer
Timothy A. Durso,Jonathan Carnell,Thomas T. Turk,Gopal N. Gupta
Journal of Endourology. 2014; 28(6): 745
[Pubmed]  [Google Scholar] [DOI]
75 A statistical shape model of the human second cervical vertebra
Marine Clogenson,John M. Duff,Marcel Luethi,Marc Levivier,Reto Meuli,Charles Baur,Simon Henein
International Journal of Computer Assisted Radiology and Surgery. 2014;
[Pubmed]  [Google Scholar] [DOI]
76 Automated cerebellar segmentation: Validation and application to detect smaller volumes in children prenatally exposed to alcohol
Valerie A. Cardenas,Mathew Price,M. Alejandra Infante,Eileen M. Moore,Sarah N. Mattson,Edward P. Riley,George Fein
NeuroImage: Clinical. 2014; 4: 295
[Pubmed]  [Google Scholar] [DOI]
77 Inaccuracies in Additive Manufactured Medical Skull Models Caused by the DICOM to STL Conversion Process
Eero Huotilainen,Risto Jaanimets,Jirí Valášek,Petr Marcián,Mika Salmi,Jukka Tuomi,Antti Mäkitie,Jan Wolff
Journal of Cranio-Maxillofacial Surgery. 2013;
[Pubmed]  [Google Scholar] [DOI]
78 Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy
Daniel F. Malan,Charl P. Botha,Edward R. Valstar
International Journal of Computer Assisted Radiology and Surgery. 2013; 8(1): 63
[Pubmed]  [Google Scholar] [DOI]
79 Reverse engineering of human bones by using method of anatomical features
Vidosav Majstorovic,Miroslav Trajanovic,Nikola Vitkovic,Milos Stojkovic
CIRP Annals - Manufacturing Technology. 2013; 62(1): 167
[Pubmed]  [Google Scholar] [DOI]
80 Radial differential interior tomography and its image reconstruction with differentiated backprojection and projection onto convex sets
Shaojie Tang,Xiangyang Tang
Medical Physics. 2013; 40(9): 091914
[Pubmed]  [Google Scholar] [DOI]
81 High quality machine-robust image features: Identification in nonsmall cell lung cancer computed tomography images
Luke A. Hunter,Shane Krafft,Francesco Stingo,Haesun Choi,Mary K. Martel,Stephen F. Kry,Laurence E. Court
Medical Physics. 2013; 40(12): 121916
[Pubmed]  [Google Scholar] [DOI]
82 Human cervical carcinoma detection and glucose monitoring in blood micro vasculatures with swept source OCT
H. Ullah,E. Ahmed,M. Ikram
JETP Letters. 2013; 97(12): 690
[Pubmed]  [Google Scholar] [DOI]
83 Object extraction from T2 weighted brain MR image using histogram based gradient calculation
Gilanie, G. and Attique, M. and Hafeez-Ullah and Naweed, S. and Ahmed, E. and Ikram, M.
Pattern Recognition Letters. 2013; 34(12): 1356-1363
[Pubmed]  [Google Scholar]
84 Micro-computed tomography imaging and analysis in developmental biology and toxicology
Wise, L.D. and Winkelmann, C.T. and Dogdas, B. and Bagchi, A.
Birth Defects Research Part C - Embryo Today: Reviews. 2013; 99(2): 71-82
[Pubmed]  [Google Scholar]
85 Comparison of two methods for the estimation of subcortical volume and asymmetry using magnetic resonance imaging: A methodological study
Ertekin, T. and Acer, N. and Içer, S. and Ilica, A.T.
Surgical and Radiologic Anatomy. 2013; 35(4): 301-309
[Pubmed]  [Google Scholar]
86 Reverse engineering of human bones by using method of anatomical features
Majstorovic, V. and Trajanovic, M. and Vitkovic, N. and Stojkovic, M.
CIRP Annals - Manufacturing Technology. 2013; 62(1): 167-170
[Pubmed]  [Google Scholar]
87 Survey of computer-aided diagnosis of thyroid nodules in medical ultrasound images
Koundal, D. and Gupta, S. and Singh, S.
Advances in Intelligent Systems and Computing. 2013; 177 AISC(VOL. 2): 459-467
[Pubmed]  [Google Scholar]
88 Voxel classification and graph cuts for automated segmentation of pathological periprosthetic hip anatomy
Malan, D.F. and Botha, C.P. and Valstar, E.R.
International Journal of Computer Assisted Radiology and Surgery. 2013; 8(1): 63-74
[Pubmed]  [Google Scholar]
89 Micro-computed tomography imaging and analysis in developmental biology and toxicology
L. David Wise,Christopher T. Winkelmann,Belma Dogdas,Ansuman Bagchi
Birth Defects Research Part C: Embryo Today: Reviews. 2013; 99(2): 71
[Pubmed]  [Google Scholar] [DOI]
90 Automatic image segmentation and classification based on direction texton technique for hemolytic anemia in thin blood smears
Hung-Ming Chen,Ya-Ting Tsao,Shin-Ni Tsai
Machine Vision and Applications. 2013;
[Pubmed]  [Google Scholar] [DOI]
91 Comparison of two methods for the estimation of subcortical volume and asymmetry using magnetic resonance imaging: a methodological study
Tolga Ertekin,Niyazi Acer,Semra Içer,Ahmet T. Ilica
Surgical and Radiologic Anatomy. 2013; 35(4): 301
[Pubmed]  [Google Scholar] [DOI]
92 Object extraction from T2 weighted brain MR image using histogram based gradient calculation
Ghulam Gilanie,Muhammad Attique,Muhammad Hafeez-Ullah,Shahid Naweed,Ejaz Ahmed,Masroor Ikram
Pattern Recognition Letters. 2013; 34(12): 1356
[Pubmed]  [Google Scholar] [DOI]
93 Computer Based Performance Evaluation of Segmentation Methods for Chest X-Ray Image
Manoj R. Tarambale,Nitin S. Lingayat
International Journal of Bioscience, Biochemistry and Bioinformatics. 2013; : 545
[Pubmed]  [Google Scholar] [DOI]
94 Semiautomated spleen volumetry with diffusion-weighted MR imaging
Jeongjin Lee,Kyoung Won Kim,Ho Lee,So Jung Lee,Sanghyun Choi,Woo Kyoung Jeong,Heewon Kye,Gi-Won Song,Shin Hwang,Sung-Gyu Lee
Magnetic Resonance in Medicine. 2012; 68(1): 305
[Pubmed]  [Google Scholar] [DOI]
95 A Semi-Automatic Algorithm for Determining the Demyelination Load in Metachromatic Leukodystrophy
Philipp Clas,Samuel Groeschel,Marko Wilke
Academic Radiology. 2012; 19(1): 26
[Pubmed]  [Google Scholar] [DOI]
96 Automatic 3D segmentation of individual facial muscles using unlabeled prior information
Yousef Rezaeitabar,Ilkay Ulusoy
International Journal of Computer Assisted Radiology and Surgery. 2012; 7(1): 35
[Pubmed]  [Google Scholar] [DOI]
97 Obtaining pseudo-3D information from single-plane X-ray imaging
Hrdý, J. and Oberta, P.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2012; 690(6245269): 7-9
[Pubmed]  [Google Scholar]
98 Mean multiclass Type I and II errors for training multilayer perceptron with particle swarm in image segmentation
Dos Santos, M.M. and Valença, M.J.S. and Dos Santos, W.P.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2012; 7435 LNCS: 135-142
[Pubmed]  [Google Scholar]
99 Semiautomated spleen volumetry with diffusion-weighted MR imaging
Lee, J. and Kim, K.W. and Lee, H. and Lee, S.J. and Choi, S. and Jeong, W.K. and Kye, H. and Song, G.-W. and Hwang, S. and Lee, S.-G.
Magnetic Resonance in Medicine. 2012; 68(1): 305-310
[Pubmed]  [Google Scholar]
100 Colorization and automated segmentation of human T2 MR brain images for characterization of soft tissues
Attique, M. and Gilanie, G. and Hafeez-Ullah and Mehmood, M.S. and Naweed, M.S. and Ikram, M. and Kamran, J.A. and Vitkin, A.
PLoS ONE. 2012; 7(3)
[Pubmed]  [Google Scholar]
101 Automatic 3D segmentation of individual facial muscles using unlabeled prior information
Rezaeitabar, Y. and Ulusoy, I.
International Journal of Computer Assisted Radiology and Surgery. 2012; 7(1): 35-41
[Pubmed]  [Google Scholar]
102 A Semi-Automatic Algorithm for Determining the Demyelination Load in Metachromatic Leukodystrophy
Clas, P. and Groeschel, S. and Wilke, M.
Academic Radiology. 2012; 19(1): 26-34
[Pubmed]  [Google Scholar]
103 Segmentation algorithms for ear image data towards biomechanical studies
Ana Ferreira,Fernanda Gentil,João Manuel R. S. Tavares
Computer Methods in Biomechanics and Biomedical Engineering. 2012; : 1
[Pubmed]  [Google Scholar] [DOI]
104 Obtaining pseudo-3D information from single-plane X-ray imaging
J. Hrdý,P. Oberta
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2012; 690: 7
[Pubmed]  [Google Scholar] [DOI]
105 A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte
R. M. Parton,R. S. Hamilton,G. Ball,L. Yang,C. F. Cullen,W. Lu,H. Ohkura,I. Davis
The Journal of Cell Biology. 2011; 194(1): 121
[Pubmed]  [Google Scholar] [DOI]
106 A modified edge-based region growing segmentation of geometric objects
Jamil, N. and Soh, H.C. and Tengku Sembok, T.M. and Bakar, Z.A.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2011; 7066 LNCS(PART 1): 99-112
[Pubmed]  [Google Scholar]
107 Automatic and semi-automatic analysis of the extension of myocardial infarction in an experimental murine model
Esteves, T., Valente, M., Nascimento, D.S., Pinto-Do-Ó, P., Quelhas, P.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6669 LNCS,. 2011; : 151-158
[Pubmed]  [Google Scholar]
108 Application of AI techniques in medical image segmentation and novel categorization of available methods and tools
Rastgarpour, M., Shanbehzadeh, J.
IMECS 2011 - International MultiConference of Engineers and Computer Scientists 2011. 2011; 1: 519-523
[Pubmed]  [Google Scholar]
109 Automatic 3D segmentation of facial soft tissues using unlabelled prior information | [Yüz yumuşak dokusunun eti̇ketlenmemi̇ş önsel bi̇lgi̇ kullanilarak 3b otomati̇k bölü tlenmesi̇]
Rezaeitabar, Y., Ulusoy, I.
2011 IEEE 19th Signal Processing and Communications Applications Conference, SIU 2011. 2011; art(5929573, ): 1-4
[Pubmed]  [Google Scholar]
110 Combined 7-T MRI and histopathologic study of normal and dysplastic samples from patients with TLE
Garbelli, R., Zucca, I., Milesi, G., Mastropietro, A., DæIncerti, L., Tassi, L., Colombo, N., (...), Spreafico, R.
Neurology. 2011; 76(13): 1177-1185
[Pubmed]  [Google Scholar]
111 A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte
Parton, R.M., Hamilton, R.S., Ball, G., Yang, L., Cullen, C.F., Lu, W., Ohkura, H., Davis, I.
Journal of Cell Biology. 2011; 194(1): 121-135
[Pubmed]  [Google Scholar]
112 A knowledge-based approach for segmenting cerebral vasculature in neuroimages
Luo, S., Jin, J.J., Li, J.
Proceedings - 3rd International Conference on Measuring Technology and Mechatronics Automation,. 2011; : 74-77
[Pubmed]  [Google Scholar]
113 Medical Image Classification Using an Optimal Feature Extraction Algorithm and a Supervised Classifier Technique
Ahmed Kharrat,Karim Gasmi,Mohamed Ben Messaoud,Nacéra Benamrane,Mohamed Abid
International Journal of Software Science and Computational Intelligence. 2011; 3(2): 19
[Pubmed]  [Google Scholar] [DOI]


Read this article