Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 126  Home  EMail this page Print this page Decrease font size Default font size Increase font size 

    Article Cited by others


Segmentation and classification of medical images using texture-primitive features: Application of BAM-type artificial neural network

Sharma Neeraj, Ray Amit K, Sharma Shiru, Shukla K K, Pradhan Satyajit, Aggarwal Lalit M

Year : 2008| Volume: 33| Issue : 3 | Page no: 119-126

   This article has been cited by
1 Semantic segmentation in medical images through transfused convolution and transformer networks
Tashvik Dhamija, Anunay Gupta, Shreyansh Gupta, Anjum, Rahul Katarya, Ghanshyam Singh
Applied Intelligence. 2022;
[Pubmed]  [Google Scholar] [DOI]
2 A Novel Radiomics-Based Tumor Volume Segmentation Algorithm for Lung Tumors in FDG-PET/CT after 3D Motion Correction—A Technical Feasibility and Stability Study
Lena Bundschuh, Vesna Prokic, Matthias Guckenberger, Stephanie Tanadini-Lang, Markus Essler, Ralph A. Bundschuh
Diagnostics. 2022; 12(3): 576
[Pubmed]  [Google Scholar] [DOI]
3 Segmentation and identification of spectral and statistical textures for computer medical diagnostics in dermatology
Xinlin Liu, Viktor Krylov, Su Jun, Natalya Volkova, Anatoliy Sachenko, Galina Shcherbakova, Jacek Woloszyn
Mathematical Biosciences and Engineering. 2022; 19(7): 6923
[Pubmed]  [Google Scholar] [DOI]
4 Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks
M. Syed Ali, M. Hymavathi, Syeda Asma Kauser, Grienggrai Rajchakit, Porpattama Hammachukiattikul, Nattakan Boonsatit
Fractal and Fractional. 2021; 6(1): 14
[Pubmed]  [Google Scholar] [DOI]
5 An apta-aggregation based machine learning assay for rapid quantification of lysozyme through texture parameters
Manoharan Sanjay, Kumar Gaurav, Maria Jesus Gonzalez-Pabon, Julio Fuchs, Susan R. Mikkelsen, Eduardo Cortón, Zhaoli Gao
PLOS ONE. 2021; 16(3): e0248159
[Pubmed]  [Google Scholar] [DOI]
6 CT Texture Analysis for Differentiating Bronchiolar Adenoma, Adenocarcinoma In Situ, and Minimally Invasive Adenocarcinoma of the Lung
Jinju Sun, Kaijun Liu, Haipeng Tong, Huan Liu, Xiaoguang Li, Yi Luo, Yang Li, Yun Yao, Rongbing Jin, Jingqin Fang, Xiao Chen
Frontiers in Oncology. 2021; 11
[Pubmed]  [Google Scholar] [DOI]
7 Comparison of different machine learning approaches to detect femoral neck fractures in x-ray images
Koray Açici, Emre Sümer, Salih Beyaz
Health and Technology. 2021; 11(3): 643
[Pubmed]  [Google Scholar] [DOI]
8 Brain tumour classification using saliency driven nonlinear diffusion and deep learning with convolutional neural networks (CNN)
K. Uthra Devi, R. Gomathi
Journal of Ambient Intelligence and Humanized Computing. 2021; 12(6): 6263
[Pubmed]  [Google Scholar] [DOI]
9 Machine learning in geo- and environmental sciences: From small to large scale
Pejman Tahmasebi, Serveh Kamrava, Tao Bai, Muhammad Sahimi
Advances in Water Resources. 2020; 142: 103619
[Pubmed]  [Google Scholar] [DOI]
10 Accelerating Super-Resolution and Visual Task Analysis in Medical Images
Ghada Zamzmi, Sivaramakrishnan Rajaraman, Sameer Antani
Applied Sciences. 2020; 10(12): 4282
[Pubmed]  [Google Scholar] [DOI]
11 Semantic segmentation of microscopic neuroanatomical data by combining topological priors with encoder–decoder deep networks
Samik Banerjee, Lucas Magee, Dingkang Wang, Xu Li, Bing-Xing Huo, Jaikishan Jayakumar, Katherine Matho, Meng-Kuan Lin, Keerthi Ram, Mohanasankar Sivaprakasam, Josh Huang, Yusu Wang, Partha P. Mitra
Nature Machine Intelligence. 2020; 2(10): 585
[Pubmed]  [Google Scholar] [DOI]
12 Evaluating Routine Variability of Daily Activities in Smart Homes with Image Complexity Measures
Bogyeong Lee, Changbum Ryan Ahn, Prakhar Mohan, Theodora Chaspari, Hyun-Soo Lee
Journal of Computing in Civil Engineering. 2020; 34(6): 04020042
[Pubmed]  [Google Scholar] [DOI]
13 A Weighted Voting Classifiers Ensemble for the Brain Tumors Classification in MR Images
Kimia Rezaei, Hamed Agahi, Azar Mahmoodzadeh
IETE Journal of Research. 2020; : 1
[Pubmed]  [Google Scholar] [DOI]
14 Computer-aided diagnosis of isocitrate dehydrogenase genotypes in glioblastomas from radiomic patterns
Chung-Ming Lo, Rui-Cian Weng, Sho-Jen Cheng, Hung-Jung Wang, Kevin Li-Chun Hsieh
Medicine. 2020; 99(8): e19123
[Pubmed]  [Google Scholar] [DOI]
15 Classification of Ancient Handwritten Tamil Characters on Palm Leaf Inscription Using Modified Adaptive Backpropagation Neural Network with GLCM Features
Poornima Devi. M, M. Sornam
ACM Transactions on Asian and Low-Resource Language Information Processing. 2020; 19(6): 1
[Pubmed]  [Google Scholar] [DOI]
16 Radiomic model for predicting mutations in the isocitrate dehydrogenase gene in glioblastomas
Kevin Li-Chun Hsieh, Cheng-Yu Chen, Chung-Ming Lo
Oncotarget. 2017; 8(28): 45888
[Pubmed]  [Google Scholar] [DOI]
17 Personalized identification of abdominal wall hernia meshes on computed tomography
Tuan D. Pham,Dinh T.P. Le,Jinwei Xu,Duc T. Nguyen,Robert G. Martindale,Clifford W. Deveney
Computer Methods and Programs in Biomedicine. 2014; 113(1): 153
[Pubmed]  [Google Scholar] [DOI]
18 Preparation of 2D sequences of corneal images for 3D model building
Abdulhakim Elbita,Rami Qahwaji,Stanley Ipson,Mhd Saeed Sharif,Faruque Ghanchi
Computer Methods and Programs in Biomedicine. 2014; 114(2): 194
[Pubmed]  [Google Scholar] [DOI]
19 Comparison of the anterior capsulotomy edge created by manual capsulorhexis and 2 femtosecond laser platforms: Scanning electron microscopy study
Khaled Al Harthi,Sami Al Shahwan,Abdulelah Al Towerki,P. Pat Banerjee,Ashley Behrens,Deepak P. Edward
Journal of Cataract & Refractive Surgery. 2014;
[Pubmed]  [Google Scholar] [DOI]
20 Segmentation and Classification of Brain CT Images Using Combined Wavelet Statistical Texture Features
A. Padma,R. Sukanesh
Arabian Journal for Science and Engineering. 2013;
[Pubmed]  [Google Scholar] [DOI]
21 Wavelet statistical texture features-based segmentation and classification of brain computed tomography images
Nanthagopal, P.A. and Sukanesh, R.
IET Image Processing. 2013; 7(1): 25-32
[Pubmed]  [Google Scholar]
22 Hybrid artificial neural network for abnormal brain image classification
Jude Hemanth, D. and Kezi Selva Vijila, C. and Immanuel Selvakumar, A. and Anitha, J.
Information (Japan). 2013; 16(1 B): 669-674
[Pubmed]  [Google Scholar]
23 Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices
Padma, A. and Sukanesh, R.
Journal of Medical Engineering and Technology. 2013; 37(1): 1-9
[Pubmed]  [Google Scholar]
24 Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis
Chicklore, S. and Goh, V. and Siddique, M. and Roy, A. and Marsden, P.K. and Cook, G.J.R.
European Journal of Nuclear Medicine and Molecular Imaging. 2013; 40(1): 133-140
[Pubmed]  [Google Scholar]
25 Patient-Wise Versus Nodule-Wise Classification of Annotated Pulmonary Nodules using Pathologically Confirmed Cases
Preeti Aggarwal,Renu Vig,H K Sardana
Journal of Computers. 2013; 8(9)
[Pubmed]  [Google Scholar] [DOI]
26 Customized First and Second Order Statistics Based Operators to Support Advanced Texture Analysis of MRI Images
Danilo Avola,Luigi Cinque,Giuseppe Placidi
Computational and Mathematical Methods in Medicine. 2013; 2013: 1
[Pubmed]  [Google Scholar] [DOI]
27 Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis
Sugama Chicklore,Vicky Goh,Musib Siddique,Arunabha Roy,Paul K. Marsden,Gary J. R. Cook
European Journal of Nuclear Medicine and Molecular Imaging. 2013; 40(1): 133
[Pubmed]  [Google Scholar] [DOI]
28 Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles
Journal of Microscopy. 2013; : n/a
[Pubmed]  [Google Scholar] [DOI]
29 Medical image thresholding using online trained neural networks
Othman, A.A.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2012; 7667 LNCS(PART 5): 672-680
[Pubmed]  [Google Scholar]
30 Particulate matter characterization by gray level co-occurrence matrix based support vector machines
Manivannan, K. and Aggarwal, P. and Devabhaktuni, V. and Kumar, A. and Nims, D. and Bhattacharya, P.
Journal of Hazardous Materials. 2012; 223-224: 94-103
[Pubmed]  [Google Scholar]
31 A region-based segmentation of tumour from brain CT images using nonlinear support vector machine classifier
Nanthagopal, A.P. and Rajamony, R.S.
Journal of Medical Engineering and Technology. 2012; 36(5): 271-277
[Pubmed]  [Google Scholar]
32 Particulate matter characterization by gray level co-occurrence matrix based support vector machines
K. Manivannan,P. Aggarwal,V. Devabhaktuni,A. Kumar,D. Nims,P. Bhattacharya
Journal of Hazardous Materials. 2012; 223-224: 94
[Pubmed]  [Google Scholar] [DOI]
33 Performance enhanced hybrid Kohonen-Hopfield neural network for abnormal brain image classification
Hemanth, D.J. and Vijila, C.K.S. and Selvakumar, A.I. and Anitha, J.
Communications in Computer and Information Science. 2011; 260 CCIS: 356-365
[Pubmed]  [Google Scholar]
34 Segmentation of breast ultrasound images using neural networks
Othman, A.A. and Tizhoosh, H.R.
IFIP Advances in Information and Communication Technology. 2011; 363 AICT(PART 1): 260-269
[Pubmed]  [Google Scholar]
35 Matching and retrieval of medical images
Rajaei, A. and Rangarajan, L.
Advances in Intelligent and Soft Computing. 2011; 91: 27-33
[Pubmed]  [Google Scholar]
36 Taxonomy of brain white matter under normal and abnormal conditions using stochastic properties of brain
Kalpana, R. and Muttan, S. and Emmanuel, R.
Journal of Applied Sciences. 2011; 11(15): 2800-2807
[Pubmed]  [Google Scholar]
37 Taxonomy of Brain White Matter under Normal and Abnormal Conditions using Stochastic Properties of Brain
R. Kalpana,S. Muttan,R. Emmanuel
Journal of Applied Sciences. 2011; 11(15): 2800
[Pubmed]  [Google Scholar] [DOI]
38 Validation of Grayscale-Based Quantitative Ultrasound in Manual Wheelchair Users : Relationship to Established Clinical Measures of Shoulder Pathology
Jennifer L. Collinger, Bradley Fullerton, Bradley G. Impink, Alicia M. Koontz, Michael L. Boninger
American Journal of Physical Medicine & Rehabilitation. 2010; 89(5): 390
[HTML Full text]  [Google Scholar] [DOI]
39 Validation of grayscale-based quantitative ultrasound in manual wheelchair users: Relationship to established clinical measures of shoulder pathology
Collinger, J.L. and Fullerton, B. and Impink, B.G. and Koontz, A.M. and Boninger, M.L.
American Journal of Physical Medicine and Rehabilitation. 2010; 89(5): 390-400
[Pubmed]  [Google Scholar]
40 Automated medical image segmentation techniques
Sharma, N., Ray, A.K., Shukla, K.K., Sharma, S., Pradhan, S., Srivastva, A., Aggarwal, L.
Journal of Medical Physics. 2010; 35(1): 3-14
[Pubmed]  [Google Scholar]
41 Reliability of Quantitative Ultrasound Measures of the Biceps and Supraspinatus Tendons
Jennifer L. Collinger,Dany Gagnon,Jon Jacobson,Bradley G. Impink,Michael L. Boninger
Academic Radiology. 2009; 16(11): 1424
[Pubmed]  [Google Scholar] [DOI]
42 Reliability of Quantitative Ultrasound Measures of the Biceps and Supraspinatus Tendons
Collinger, J.L., Gagnon, D., Jacobson, J., Impink, B.G., Boninger, M.L.
Academic Radiology. 2009; 16(11): 1424-1432
[Pubmed]  [Google Scholar]


Read this article