Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 494  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2022  |  Volume : 47  |  Issue : 2  |  Page : 173-180

Evaluation of Surface Dose and Commissioning of Compensator-Based Total Body Irradiation


1 Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu; Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India
2 Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
3 Department of Radiation Oncology, Fortis Hospital, Mohali, Punjab, India
4 Department of Radiotherapy, Bangalore Baptist Hospital, Bengaluru, Karnataka, India

Correspondence Address:
Dr. D Khanna
Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.jmp_137_21

Rights and Permissions

Purpose: The aim of the current study is to commission compensator-based total body irradiation (TBI) and to compare surface dose using percentage depth dose (PDD) while varying the distance between beam spoiler and phantom surface. Materials and Methods: TBI commissioning was performed on Elekta Synergy® Platform linear accelerator for bilateral extended source to surface distance treatment technique. The PDD was measured by varying the distance (10 cm, 20 cm, 30 cm, and 40 cm) between the beam spoiler and the phantom surface. Beam profile and half-value layer (HVL) measurement were carried out using the FC65 ion-chamber. Quality assurance (QA) was performed using an in-house rice-flour phantom (RFP). In-vivo diodes (IVD) were placed on the RFP at various regions to measure the delivered dose, and it was compared to the calculated dose. Results: An increase in Dmax and surface dose was observed when beam spoiler was moved away from the phantom surface. The flatness and symmetry of the beam profile were calculated. The HVL of Perspex and aluminum is 17 cm and 8 cm, respectively. The calculated dose of each region was compared to the measured dose on the RFP with IVD, and the findings showed that the variation was <4.7% for both Perspex and Aluminum compensators. Conclusion: The commissioning of the compensator-based TBI technique was performed and its QA measurements were carried out. The Mayneord factor corrected PDD and measured PDD values were compared. The results are well within the clinical tolerance limit. This study concludes that 10 cm −20 cm is the optimal distance from the beam spoiler to phantom surface to achieve prescribed dose to the skin.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed62    
    Printed0    
    Emailed0    
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal