Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 477  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2022  |  Volume : 47  |  Issue : 2  |  Page : 136-140

Biological Evaluation of Grid versus 3D Conformal Radiotherapy in Bulky Head and Neck Cancer

1 Department of Medical Physics, Aljawad Radiotherapy Center, Imamein Kadhimein Medical City, Al- Nahrain University, Baghdad, Iraq
2 Department of Radiotherapy, National Cancer Institute, Cairo University, Cairo, Egypt
3 Department of Radiotherapy, Nasser Institute for Research and Treatment, Cairo University, Cairo, Egypt
4 Department of Physics, Division of Medical Biophysics, Faculty of Science, Helwan University, Cairo, Egypt

Correspondence Address:
Dr. Najah Abdulmuneem Alanizy
Aljawad Radiotherapy Center, St. 60, Alkadhemiya Medical City, Baghdad
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmp.jmp_141_21

Rights and Permissions

Grid radiotherapy is one of the treatment techniques applied to treat patients with advanced bulky tumors. Purpose: This study aims to estimate the difference in biological and dosimetric parameters of the grid radiotherapy technique for the treatment of bulky head and neck (H and N) tumors and compare it with conventional conformal radiotherapy. Subjects and Methods: Three-dimensional conformal and grid radiotherapy were designed by the Monaco treatment planning system (TPS). Eight bulky tumors of (H and N) cases were selected, using a single fraction 15–20 Gy. Dose-volume histogram of the tumors and organs at risk (OARs) used to calculate the equivalent uniform dose (EUD) (Gy) by Matlab program. Furthermore, dosimetric parameters of the tumors from the TPS were compared for two techniques (grid radiotherapy and the conventional conformal radiotherapy). Results: Grid attained a lower EUD (Gy) in tumors and OARs as compared to conformal therapy, as Grid principle protects about half of the tumor area from the radiation leads to less coverage of the tumor. Also, where OARs in closed with tumors and the shielding by multi-leaf (1 cm) were more effective than other techniques, lead to a decrease of radiobiological values according to its definition by Niemierko. Radiobiological results showed significant differences between the two methods, and dosimetric data obtained by the TPS for tumours for two plans were P < 0.05. Conclusions: The grid plan achieves lower values of EUDs than the conformal technique for OARs. Hence, it achieves more sparing and fewer complications for these organs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded236    
    Comments [Add]    

Recommend this journal