Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 175  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2021  |  Volume : 46  |  Issue : 4  |  Page : 324-333

Surface dose measurements in chest wall postmastectomy radiotherapy to achieve optimal dose delivery with 6 MV photon beam


1 Department of Radiation Oncology, Kasturba Medical College (A Constituent Institution of Manipal Academy of Higher Education), Mangalore, Karnataka, India
2 Department of Community Medicine, Kasturba Medical College (A Constituent Institution of Manipal Academy of Higher Education), Mangalore, Karnataka, India

Correspondence Address:
Dr. Challapalli Srinivas
Department of Radiation Oncology, Kasturba Medical College (A Constituent Institution of Manipal Academy of Higher Education), Light House Hill Road, Mangalore - 575 001, Karnataka
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmp.jmp_59_21

Rights and Permissions

Aim: A tissue-equivalent bolus of sufficient thickness is used to overcome build up effect to the chest wall region of postmastectomy radiotherapy (PMRT) patients with tangential technique till Radiation Therapy Oncology Group (RTOG) Grade 2 (dry desquamation) skin reaction is observed. The aim of this study is to optimize surface dose delivered to chest wall in three-dimensional radiotherapy using EBT3 film. Materials and Methods: Measurements were conducted with calibrated EBT3 films with thorax phantom under “open beam, Superflab gel (0.5 cm) and brass bolus conditions to check correlation against TPS planned doses. Eighty-two patients who received 50 Gy in 25# were randomly assigned to Group A (Superflab 0.5 cm gel bolus for first 15 fractions followed by no bolus in remaining 10 fractions), Group B or Group C (Superflab 0.5 cm gel or single layer brass bolus, respectively, till reaching RTOG Grade 2 skin toxicity). Results: Phantom measured and TPS calculated surface doses were within − 5.5%, 4.7%, and 8.6% under open beam, 0.5 cm gel, and single layer of brass bolus applications, respectively. The overall surface doses (OSD) were 80.1% ±2.9% (n = 28), 92.6% ±4.6% (n = 28), and 87.4% ±4.7% (n = 26) in Group A, B, and C, respectively. At the end of treatment, 7 out of 28; 13 out of 28; and 9 out of 26 patients developed Grade 2 skin toxicity having the OSD value of 83.0% ±1.6% (n = 7); 93.7% ±3.2% (n = 13); and 89.9% ±5.6% (n = 9) in Groups A, B, and C, respectively. At the 20th–23rd fraction, 2 out of 7; 6 out of 13; and 4 out of 9 patients in Groups A, B, and C developed a Grade 2 skin toxicity, while the remaining patients in each group developed at the end of treatment. Conclusions: Our objective to estimate the occurrence of optimal dose limit for bolus applications in PMRT could be achieved using clinical EBT3 film dosimetry. This study ensured correct dose to scar area to protect cosmetic effects. This may also serve as quality assurance on optimal dose delivery for expected local control in these patients.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1124    
    Printed32    
    Emailed0    
    PDF Downloaded126    
    Comments [Add]    

Recommend this journal