Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 569  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2020  |  Volume : 45  |  Issue : 2  |  Page : 71-77

Influence of cleaned-up commercial knowledge-based treatment planning on volumetric-modulated arc therapy of prostate cancer

1 Department of Medical Physics, Graduate School of Medical Sciences, Kindai University, Osaka, Japan
2 Department of Radiation Oncology, Osaka International Cancer Institute, 3Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
3 Department of Radiation Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto, Tokyo, Japan
4 Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan

Correspondence Address:
Dr. Hajime Monzen
377-2 Onohigashi, Osakasayama, Osaka 589-8511
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmp.JMP_109_19

Rights and Permissions

Purpose: This study aimed to investigate the influence of cleaned-up knowledge-based treatment planning (KBP) models on the plan quality for volumetric-modulated arc therapy (VMAT) of prostate cancer. Materials and Methods: Thirty prostate cancer VMAT plans were enrolled and evaluated according to four KBP modeling methods as follows: (1) model not cleaned – trained by fifty other clinical plans (KBPORIG); (2) cases cleaned by removing plans that did not meet all clinical goals of the dosimetric parameters, derived from dose–volume histogram (DVH) (KBPC-DVH); (3) cases cleaned outside the range of ±1 standard deviation through the principal component analysis regression plots (KBPC-REG); and (4) cases cleaned using both methods (2) and (3) (KBPC-ALL). Rectal and bladder structures in the training models numbered 34 and 48 for KBPC-DVH, 37 and 33 for KBPC-REG, and 26 and 33 for KBPC-ALL, respectively. The dosimetric parameters for each model with one-time auto-optimization were compared. Results: All KBP models improved target dose coverage and conformity and provided comparable sparing of organs at risks (rectal and bladder walls). There were no significant differences in plan quality among the KBP models. Nevertheless, only the KBPC-ALLmodel generated no cases of >1% V78 Gy(prescribed dose) to the rectal wall, whereas the KBPORIG, KBPC-DVH, and KBPC-REG modelsincluded two, four, and three cases, respectively, which were difficult to overcome with KBP because the planning target volume (PTV) and rectum regions overlapped. Conclusions: The cleaned-up KBP model based on DVH and regression plots improved plan quality in the PTV–rectum overlap region.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded305    
    Comments [Add]    
    Cited by others 4    

Recommend this journal