Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 1365  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2019  |  Volume : 44  |  Issue : 1  |  Page : 9-15

Pretreatment dose verification in volumetric modulated arc therapy using liquid ionization chamber

1 Radiological Physics and Advisory Division, Bhabha Atomic Research Center; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
2 Radiological Physics and Advisory Division, Bhabha Atomic Research Center, Mumbai, Maharashtra, India
3 Department of Radiotherapy, P. D. Hinduja National Hospital, Mumbai, Maharashtra, India

Correspondence Address:
Dr. Sunil Dutt Sharma
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT and CRS Building, Anushakti Nagar, Mumbai - 400 094, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmp.JMP_108_18

Rights and Permissions

Purpose: The purpose of the present study was to evaluate the practicability of liquid ionization chamber (LIC) for pretreatment dose verification of the advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT). Materials and Methods: The dosimetric characteristics of LIC such as repeatability, sensitivity, monitor unit linearity, dose rate dependence, angular dependence, voltage-current response, and output factors were investigated in 6 MV therapeutic X-ray beams. The LIC was cross-calibrated against 0.125-cc air-filled thimble ionization chamber. A dedicated dosimetry insert made up of Perspex to incorporate the LIC at proper location in the intensity-modulated radiation therapy thorax phantom was locally fabricated. The collection efficiency and ion recombination correction factor was determined using the two-dose rate method. Pretreatment dose verification measurement of VMAT treatment plans were carried out using the liquid ionization chamber as well as small volume (0.125 cc) air-filled thimble ionization chamber. The measured dose values by the two dosimeters and TPS calculated dose at a given point were compared. Results: The relative percentage differences between the TPS calculated and measured doses were within ± 1.57% for LIC and ± 2.21% for 0.125 cc ionization chamber, respectively. Conclusions: The measured dose values by the two dosimeters and TPS calculated dose at a given point were found comparable suggesting that the LIC could be a good choice of dosimeter for pretreatment dose verification in VMAT.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded233    
    Comments [Add]    
    Cited by others 4    

Recommend this journal