Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 182  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
Year : 2014  |  Volume : 39  |  Issue : 4  |  Page : 206-211

Acceptance criteria for flattening filter-free photon beam from standard medical electron linear accelerator: AERB task group recommendations

1 Radiological Safety Division, Atomic Energy Regulatory Board, Niyamak Bhavan, Mumbai, India
2 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Mumbai, India
3 Department of Medical Physics, Tata Memorial Hospital, Mumbai, India
4 Department of Medical Physics, Delhi State Cancer Institute, New Delhi, India
5 Department of Radiotherapy, Ruby Hall Clinic, Pune, India
6 Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, India

Correspondence Address:
S D Sharma
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Anushaktinagar, Mumbai 400 094, Maharashtra
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0971-6203.144482

Rights and Permissions

Medical electron linear accelerators with the capability of generating unflat photon (flattening filter-free, FFF) beams are also available commercially for clinical applications in radiotherapy. However, the beam characteristics evaluation criteria and parameters are not yet available for such photon beams. Atomic Energy Regulatory Board (AERB) of India constituted a Task Group comprising experts from regulatory agency, advisory body/research and technical institutions, and clinical radiotherapy centers in the country to evolve and recommend the acceptance criteria for the flattening filter-free (FFF) photon beams. The Task Group thoroughly reviewed the literature and inputs of the manufactures/suppliers of the FFF linac and recommended a set of dosimetry parameters for evaluating the characteristics of the unflat photon beam. The recommendations included the evaluation of quality index, degree of unflatness, difference in percentage surface dose between flat and unflat photon beams, percentage depth dose at 10 cm depth, off-axis-ratios and radiation beam penumbra. The recommended parameters were evaluated for FFF photon beams generated by three different models of the linac, and it was observed that recommended evaluation methods are simple and easy to be implemented with the existing dosimetry and quality assurance infrastructure of the linac facilities of the radiotherapy departments. Recommendations were also made for periodic quality control check of the unflat photon beams and constancy evaluation in the beam characteristics.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1187    
    Comments [Add]    
    Cited by others 2    

Recommend this journal