Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 296  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2012  |  Volume : 37  |  Issue : 2  |  Page : 81-89

Impact of edema and seed movement on the dosimetry of prostate seed implants


1 Department of Medical Physics, Cross Cancer Institute, Alberta Health Services - Cancer Care and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
2 Department of Radiation Oncology, Cross Cancer Institute, Alberta Health Services - Cancer Care and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada

Correspondence Address:
Ron S Sloboda
Cross Cancer Institute, Room 0418, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.94742

Rights and Permissions

This article summarizes current knowledge concerning the characterization of prostatic edema and intra-prostatic seed movement as these relate to dosimetry of permanent prostate implants, and reports the initial application to clinical data of a new edema model used in calculating pre- and post-implant dose distributions. Published edema magnitude and half-life parameters span a broad range depending on implant technique and measurement uncertainty, hence clinically applicable values should be determined locally. Observed intra-prostatic seed movements appear to be associated with particular aspects of implant technique and could be minimized by technique modification. Using an extended AAPM TG-43 formalism incorporating the new edema model, relative dose error RE associated with neglecting edema was calculated for three I-125 seed implants (18.9 cc, 37.6 cc, 60.2 cc) performed at our center. Pre- and post-plan RE average values and ranges in a 50 × 50 × 50 mm 3 calculation volume were similar at ~2% and ~0-3.5%, respectively, for all three implants; however, the spatial distribution of RE varied for different seed configurations. Post-plan values of D90 and V100 for prostate were reduced by ~2% and ~1%, respectively. In cases where RE is not clinically negligible as a consequence of large edema magnitude and / or use of Pd-103 seeds, the dose calculation method demonstrated here can be applied to account for edema explicitly and there by improve the accuracy of clinical dose estimates.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4377    
    Printed189    
    Emailed1    
    PDF Downloaded140    
    Comments [Add]    
    Cited by others 1    

Recommend this journal