Journal of Medical Physics
 Home | Search | Ahead of print | Current Issue | Archives | Instructions | Subscription | Login  The official journal of AMPI, IOMP and AFOMP      
 Users online: 1099  Home  EMail this page Print this page Decrease font size Default font size Increase font size 
ORIGINAL ARTICLE
Year : 2007  |  Volume : 32  |  Issue : 1  |  Page : 18-23

Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems


1 Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT and CRS Building, Anushaktinagar, Mumbai - 400 094, India
2 Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay - 400 085, India
3 Bombay Hospital, Marine Lines, Mumbai - 400020, India
4 Department of Medical Physics, Tata Memorial Hospital, Mumbai - 400 012, India
5 Advanced Centre for Treatment Education and Research in Cancer, Navi Mumbai, India
6 P. D. Hinduja National Hospital, Mahim, Mumbai - 400 016, India
7 CSIR/BARC, CT and CRS Building, Anushaktinagar, Mumbai - 400 094, India

Correspondence Address:
S D Sharma
Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT and CRS Building, Anushaktinagar, Mumbai - 400 094
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0971-6203.31145

Rights and Permissions

Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed10524    
    Printed417    
    Emailed10    
    PDF Downloaded984    
    Comments [Add]    
    Cited by others 4    

Recommend this journal